Episodic Exploration for Deep Deterministic Policies for Starcraft Micromanagement
نویسندگان
چکیده
We consider scenarios from the real-time strategy game StarCraft as benchmarks for reinforcement learning algorithms. We focus on micromanagement, that is, the short-term, low-level control of team members during a battle. We propose several scenarios that are challenging for reinforcement learning algorithms because the stateaction space is very large, and there is no obvious feature representation for the value functions. We describe our approach to tackle the micromanagement scenarios with deep neural network controllers from raw state features given by the game engine. We also present a heuristic reinforcement learning algorithm which combines direct exploration in the policy space and backpropagation. This algorithm collects traces for learning using deterministic policies, which appears much more efficient than, e.g., -greedy exploration. Experiments show that this algorithm allows to successfully learn non-trivial strategies for scenarios with armies of up to 15 agents, where both Q-learning and REINFORCE struggle.
منابع مشابه
Episodic Exploration for Deep Deterministic Policies: An Application to StarCraft Micromanagement Tasks
We consider scenarios from the real-time strategy game StarCraft as new benchmarks for reinforcement learning algorithms. We propose micromanagement tasks, which present the problem of the short-term, low-level control of army members during a battle. From a reinforcement learning point of view, these scenarios are challenging because the stateaction space is very large, and because there is no...
متن کاملQMIX: Monotonic Value Function Factorisation for Deep Multi-Agent Reinforcement Learning
In many real-world settings, a team of agents must coordinate their behaviour while acting in a decentralised way. At the same time, it is often possible to train the agents in a centralised fashion in a simulated or laboratory setting, where global state information is available and communication constraints are lifted. Learning joint actionvalues conditioned on extra state information is an a...
متن کاملNeuroevolution for Micromanagement in the Real-Time Strategy Game Starcraft: Brood War
Real-Time Strategy (RTS) games have become an attractive domain for AI research in recent years, due to their dynamic, multi-agent and multi-objective environments. Micromanagement, a core component of many RTS games, involves the control of multiple agents to accomplish goals that require fast, real time assessment and reaction. In this paper, we present the application and evaluation of a Neu...
متن کاملBayesian Networks for Micromanagement Decision Imitation in the RTS Game Starcraft
Real time strategy (RTS) games provide various research areas for Artificial Intelligence. One of these areas involves the management of either individual or small group of units, called micromanagement. This research provides an approach that implements an imitation of the player’s decisions as a mean for micromanagement combat in the RTS game Starcraft. A bayesian network is generated to fit ...
متن کاملStarCraft Micromanagement with Reinforcement Learning and Curriculum Transfer Learning
Real-time strategy games have been an important field of game artificial intelligence in recent years. This paper presents a reinforcement learning and curriculum transfer learning method to control multiple units in StarCraft micromanagement. We define an efficient state representation, which breaks down the complexity caused by the large state space in the game environment. Then a parameter s...
متن کامل